Math 241 Winter 2023 Lecture 15

Feb 19-8:47 AM

> Introduction to Vectors:
> Draw vector $V=\overrightarrow{A B}$ where $A(-3,2)$ and $B(4,0)$.

Draw $\overrightarrow{A B}$ with $A(-5,-2)$ \& $B(0,6)$.

Initial Point at $(0,0)$
and Terminal Point at $\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$

Jan 30-7:14 AM

Draw $\vec{u}=\langle 8,3\rangle$ and $\vec{v}=\langle-2,6\rangle$

Consider vector $v=\langle a, b\rangle$
its length or magnitude $|V|=\sqrt{a^{2}+b^{2}}$
Suppose $v=\langle 6,8\rangle$, find its magnitude.

$$
|v|=\sqrt{a^{2}+b^{2}}=\sqrt{6^{2}+8^{2}}=\sqrt{100}=10
$$

Given $u=\langle-12,5\rangle$

1) Draw u

Some operations with vectors:

$$
u=\left\langle a_{1}, b_{1}\right\rangle \quad \varepsilon \quad v=\left\langle a_{2}, b_{2}\right\rangle
$$

1) $u+v=\left\langle a_{1}+a_{2}, b_{1}+b_{2}\right\rangle$
2) $u-v=\left\langle a_{1}-a_{2}, b_{1}-b_{2}\right\rangle$
3) $u \cdot v=a_{1} a_{2}+b_{1} b_{2}$
dot Product
4) $c u=c\left\langle a_{1}, b_{1}\right\rangle=\left\langle c a_{1}, c b_{1}\right\rangle \quad c$ is a real \#

$$
u=\langle 2,-3\rangle, v=\langle-1,2\rangle
$$

1) $u+v=\langle 2+(-1),-3+2\rangle=\langle 1,-1\rangle$
2) $u-v=\langle 2-(-1),-3-2\rangle=\langle 3,-5\rangle$
3) $u \cdot v=2(-1)+(-3)(2)=-2-6=-8$
4) $4 u=4\langle 2,-3\rangle=\langle 8,-12\rangle$
5) $-2 v=-2\langle-1,2\rangle=\langle 2,-4\rangle$

$$
u=\langle 5,-4\rangle, V=\langle 1,4\rangle
$$

1) Draw $u \dot{\varepsilon} v$.
2) find and draw $u+v$.

$$
u+v=\langle 5+1,-4+4\rangle=\langle 6,0\rangle
$$

3) find and draw $u-v$

$$
u-v=\langle 5-1,-4-4\rangle=\langle 4,-8\rangle
$$

4) find $u \cdot v=5(7)+(-4)(4)=5-16=-11$ "u dot v "

5) find $-u$, and draw it

$$
-u=-1\langle-3,4\rangle=\langle 3,-4\rangle
$$

4) find $u \cdot u=\langle-3,4\rangle \cdot\langle-3,4\rangle=(-3)(-3)+4(4)=25$ So $u \cdot u=|u|^{2}$

Jan 30-7:43 AM

Special $\underbrace{\text { Unit Vectors: }}_{\text {length }=1}$

$$
i=\langle 1,0\rangle \quad, j=\langle 0,1\rangle
$$

along x-axis along y-axis

$$
\begin{aligned}
v=\langle a, b\rangle & =a\langle 1,0\rangle+b\langle 0,1\rangle \\
& =a i+b j \\
v=-4 i-5 j & =-4\langle 1,0\rangle-5\langle 0,1\rangle \\
& =\langle-4,0\rangle+\langle 0,-5\rangle \\
& =\langle-4,-5\rangle
\end{aligned}
$$

Draw V, and find its magnitude.

$$
\begin{aligned}
|u| & =\sqrt{(-4)^{2}+(-5)^{2}} \\
& =\sqrt{16+25} \\
& =\sqrt{41}
\end{aligned}
$$

Consider the vector V below: θ is called the direction angle Direction angle is the Smallest positive in Standard position with Positive x-axis

Suppose $|v|=6, \theta=120^{\circ}$
Horizontal Component:

$$
|v| \cos \theta=6 \cdot \cos 120^{\circ}=6 \cdot-\cos 60^{\circ}=6 \cdot\left(-\frac{1}{2}\right)^{\downarrow}=-3
$$

Vertical Component:

$$
\begin{aligned}
& |v| \sin \theta=6 \cdot \sin 120^{\circ}=6 \cdot \sin 60^{\circ}=6 \cdot \frac{\sqrt{3}}{2}=3 \sqrt{3} \\
& \begin{aligned}
v=\langle | v|\cos \theta,|v| \sin \theta\rangle & =|v|\langle\cos \theta, \sin \theta\rangle \\
& =6\left\langle\cos 120^{\circ}, \sin 120^{\circ}\right) \\
& =\langle-3,3 \sqrt{3}\rangle
\end{aligned}
\end{aligned}
$$

Jan 30-7:59 AM

$$
|u|=4 \sqrt{2}, \quad \theta=225^{\circ}
$$

1) Draw u
2) Find horizontal Component.

3) find Vertical Component

$$
|u| \sin \theta=4 \sqrt{2} \sin 225^{\circ}=4 \sqrt{2}\left(-\frac{\sqrt{2}}{2}\right)=-4
$$

4) Express u using $i \dot{\dot{J}}$ notation.

$$
\begin{aligned}
& u=|u| \cos \theta i+|u| \sin \theta j \\
& u=-4 i-4 j
\end{aligned}
$$

$$
u=4 \sqrt{3} i-4 j
$$

1) Draw u
2) $|u|=\sqrt{(4 \sqrt{3})^{2}+(-4)^{2}}$

$$
=\sqrt{48+16}=\sqrt{64}=8
$$

3) find its direction angle.

Given $u=\langle 2,5\rangle, v=\langle 4,-3\rangle$

1) Draw u غ̀v
2) find $|u| \dot{\xi}|v|$

$$
|u|=\sqrt{2^{2}+5^{2}}=\sqrt{29}
$$

3) find $u \cdot v$

$$
u \cdot v=2(4)+5(-3)=8-15=-7 \quad \quad \begin{aligned}
& \text { angle between } \\
& u \xi v
\end{aligned}
$$

The dot product theorem: $u \cdot v=|u||v| \cos \theta$ If we Solve $\cos \theta=\frac{u \cdot v}{|u||v|}$
for our example

$$
\begin{aligned}
\cos \theta=\frac{-7}{\sqrt{29} \cdot 5} \Rightarrow \cos \theta & =-.260 \\
\theta & =\cos ^{-1}(-.260) \\
\theta & \approx 105^{\circ}
\end{aligned}
$$

$$
u=\langle 2,1\rangle \quad, \quad v=\langle-1,2\rangle
$$

1) Draw $U \in V$ $|u|=\sqrt{2^{2}+1^{2}}=\sqrt{5},|v|=\sqrt{(-1)^{2}+2^{2}}=5$
2) Sind
$|u| \dot{\varepsilon}|v|$
3) find $u \cdot v=2(-1)+1(2)=-2+2$
4) Sind the angle between $U \in V$.

$$
\begin{aligned}
& \cos \theta=\frac{u \cdot v}{|u||v|}=\frac{0}{\sqrt{5} \sqrt{5}}=\frac{0}{5}=0 \rightarrow \theta=\cos ^{-1}(0) \\
& \theta=90^{\circ} \\
& \text { \&纟.v are perpendicular to each other. }
\end{aligned}
$$

Orthogonal

$$
\begin{gathered}
\text { If } u \cdot v=0 \text {, then } \\
u \perp v
\end{gathered}
$$

Assuming $U \dot{\varepsilon} \cdot V$ are not Zero Vectors.
are $U \dot{\varepsilon} V$ orthogonal vectors?
1)

$$
\begin{aligned}
& u=\langle 6,4\rangle \quad v=\langle-2,3\rangle \\
& u \cdot v=6(-2)+4(3)=-12+12=0 \quad \text { Yes }
\end{aligned}
$$

2)

$$
\begin{aligned}
& u=4 i, v=-i+3 j \\
& u=\langle 4,0\rangle \quad v=\langle-1,3\rangle \\
& u \cdot v=4(-1)+0(3)=-4 \neq 0 \quad \text { No }
\end{aligned}
$$

find the angle between $u=3 i+4 j$ and

$$
\begin{array}{ll}
v=-2 i-j, & \cos \theta=\frac{u \cdot v}{|u||v|} \\
u=\langle 3,4\rangle & \\
v=\langle-2,-1\rangle & \theta=\cos ^{-1}\left(\frac{u \cdot v}{|u||v|}\right) \\
\left.\begin{array}{l}
u \cdot v=3(-2)+4(-1)
\end{array}\right)=-6-4=--10 \\
|u|=\sqrt{3^{2}+4^{2}}=5 \\
|v|=\sqrt{(-2)^{2}+(-1)^{2}}=\sqrt{5} & \theta=\cos ^{-1}\left(\frac{-10}{5 \sqrt{5}}\right) \\
& =\cos ^{-1}\left(\frac{-2}{\sqrt{5}}\right) \approx 153^{\circ}
\end{array}
$$

$$
u=\langle 3,-2\rangle, \quad v=\langle-3,2\rangle
$$

1) Draw $U \in V$
2) find $|u| \dot{\varepsilon}|v|=\sqrt{(-3)^{2}+2^{2}}=\sqrt{13}$

$$
|u|=\sqrt{3^{2}+(-2)^{2}}=\sqrt{13}
$$

3) find $u \cdot V=3(-3)+(-2)(2)=-13$
4) find the angle between U है V.

$$
\theta=\cos ^{-1}\left(\frac{u \cdot v}{|u||v|}\right)=\cos ^{-1}\left(\frac{-13}{\sqrt{13} \sqrt{13}}\right)=\cos ^{-1}\left(\frac{-13}{\frac{13}{\theta=180^{\circ}}}\right)=\cos ^{-1}(-1)
$$

Jan 30-9:23 AM

Given

$$
u=\langle 4,6\rangle, \quad v=\langle 6,-8\rangle
$$

1) Draw u \&.v

$$
\frac{u \cdot v}{|v|}=\frac{-24}{10}=-2.4
$$

Projection of U onto V.

$$
\begin{array}{r}
\operatorname{Proj} u= \\
v \\
\text { Component of } u \\
\text { onto } v \text { times }
\end{array}
$$ a Unit Vector along V

Jan 30-9:38 AM

$$
u=\langle-2,9\rangle, v=\langle-1,2\rangle
$$

$$
u=\langle-2,4\rangle \quad V=\langle 8,8\rangle
$$

1) Draw $u \dot{\varepsilon} V$
2) $\operatorname{Proj}_{v} u=\left(\frac{u \cdot v}{|v|}\right)$.

$$
\begin{aligned}
& =\frac{16}{8 \sqrt{2}} \cdot \frac{1}{8 \sqrt{2}} v \\
& =\frac{1}{8} v=\frac{1}{8}\langle 8,8\rangle=\langle 1,1\rangle
\end{aligned}
$$

Prog

Jan 30-9:51 AM

$$
u=\langle 2,9\rangle, v=\langle-3,4\rangle
$$

Draw $u \dot{\varepsilon} v$

Vector u can be written as $u_{1}+u_{2}$ where

$$
\begin{aligned}
& u_{1}=\operatorname{Prg}_{v}^{u} \\
& u_{2}=u-\operatorname{Prg}_{v} u
\end{aligned}
$$

$$
=\left\langle-\frac{18}{5}, \frac{24}{5}\right\rangle
$$

Given $u=\langle 1,2\rangle, v=\langle 1,-3\rangle$

1) Draw $u \in \cdot v$
2) find

$u_{1}=\operatorname{Proj}_{v} u=\left\langle\frac{-1}{2}, \frac{3}{2}\right\rangle$
$u_{2}=u-\operatorname{Prog}_{v} u=\langle 1,2\rangle-\left\langle\frac{-1}{2}, \frac{3}{2}\right\rangle$
$=\left\langle 1-\frac{-1}{2}, 2-\frac{3}{2}\right\rangle=\left\langle 1+\frac{1}{2}, 2-\frac{3}{2}\right\rangle$
$=\left\langle\frac{3}{2}, \frac{1}{2}\right\rangle$
$u=u_{1}+u_{2}=\left\langle\frac{-1}{2}, \frac{3}{2}\right\rangle+\left\langle\frac{3}{2}, \frac{1}{2}\right\rangle=\left\langle\frac{-1}{2}+\frac{3}{2}, \frac{3}{2}+\frac{1}{2}\right\rangle$
$=\left\langle\frac{2}{2}, \frac{4}{2}\right\rangle$

$$
=\langle 1,2\rangle
$$

Jan 30-10:06 AM

$$
u=\langle 5,0\rangle \quad v=\langle 0,4\rangle
$$

1) Draw $u \dot{\varepsilon} . V$
2) $\operatorname{Proj}_{v} u=\frac{u \cdot v}{|v|} \cdot \frac{1}{|v|} v$

$$
=\frac{0}{4} \cdot \frac{1}{4} V=0 V=\vec{O}
$$

SG e 21 due at 7:00 in person
Tuesday.

Introduction to polar coordinate system

1) Polar $a x$ is $(x$-axis, $x \geq 0)$
2) angle θ
3) distance from Pole (origin) r

Polar Coordinate (r, θ)
Plot $\left(\underset{4}{2}, \frac{\pi}{4}\right)$

Plot $\left(-3, \frac{3 \pi}{4}\right)$

from Pole
opposite direction

Jan 30-11:00 AM

Jan 30-11:11 AM

Plot $\left(2 \sqrt{2}, \frac{5 \pi}{4}\right)$

225°

$$
\begin{aligned}
x & =r \cos \theta \\
& =2 \sqrt{2} \cdot \cos \frac{5 \pi}{4} \\
& =2 \sqrt{2} \cdot \frac{-\sqrt{2}}{2}=-2
\end{aligned}
$$

$$
y=r \sin \theta=2 \sqrt{2} \cdot \sin \frac{5 \pi}{4}
$$

$$
=-2
$$

Jan 30-11:20 AM

Consider the rectangular point $(2,-2 \sqrt{3})$

1) Plot it.
2) find r

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =2^{2}+(-2 \sqrt{3})^{2} \\
& =4+4 \cdot 3=16 \\
r^{2} & =16 \quad r=4
\end{aligned}
$$

$(2,-2 \sqrt{3}) \quad$ Rectangular $\left(4, \frac{5 \pi}{3}\right) \quad$ Polar

$$
\tan \theta=-\sqrt{3}
$$ RA. $60^{\circ}=\frac{\pi}{3}$

$$
\theta=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}
$$

